AD-A139 939 ON THE SEQUENTIAL NATURE OF UNIFICHTION(U
HRSSRCHUSETTS INST OF TECH CAMBRIDGE LRB FOR COHPUTER
CIENCE C DWORK ET AL. MAR 84 MIT/LLCS/TM
UNCLASSIFIED N88814 83-K-0146 / 12/1

Top T R s B byl gy W 4o Wy

ESESAS R L% R AL So il & S N 0t do it Al e v & Wl N £ R ™ .

i
o
atalal

4y

N
O
iz

FEEER
EEEE

= .
|||||'E
== I g
= ll— ®~
mm mm | [5
- ik
B NN s oy ot M .| WP}

B

LA
L 7 o

2
reep

MICROCOPY RESOLUTION TEST CHART '
NATIONAL BUREAU OF STANDARDS - 1963 A

H

R o A

R

>

A
o

o

.

\'h',.\

> e TR (T ,".
‘)‘ % *_s AR

e A AL A LA KN

Bk, MASSACHUSETTS
INSTITUTE OF

il

% LABORATORY FOR ﬁ
L TECHNOLOGY

o> COMPUTER SCIENCE

ADA139

ON THE SEQUENTIAL NATURE OF UNIFICATION

Cynthia Dwork
Paris C. Kanellakis
John C. Mitchell

[N
¢ ¢ 0

DTIC
AELECTE
q% APR 1 019849

el

hY
IR

'y

¥

P

A

OTIC FILE copy

Pyl
55

545 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139
ol ' .
o 84 04 09 123

LN T S S A N PR S S S YR TP Y N e T i S - LY
g e AL T T e e e e T R A AR R AR AT LR AR

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ("hen Date Entered)
READ INSTRUCTION
. REPORY NUM If WAVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TM-257 A D \R99
4. TITLE (and Subtitle) ! TYPE OF REPORT & PERIOD COVERED
"On the Sequential Nature of Unification" Interim Research
6. PERFORMING ORG. REPORYT NUMBER
| MIT/LCSL’E‘M—ZSJ
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
. . DOD/DARPA
Cynthia Dwork, Paris C. Kanellakis, and N00014-83~-K-0146
John C. Mitchell NSF MCS-8210830
1. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
MIT Laboratory for Computer Science
545 Technology Square

Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Q DARPA/Dept. of Defense March 1984
5 1400 Wilson Boulevard 3. luzuaun OF PAGES

Arlington, VA 22217
T4, MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office) 18. SECURITY CLASS. (of this report)

ONR/Dept. of the Navy
Informatlon SYStems PrOgram | 182, DECL ASSIFICATION/ DOWNGRADING
Arlington, VA 22217 SCHEOULE

et ettt e ——————
16. DISTRIBUTION STATEMENT (of this Report)

> (]
n‘ 4 l'
L P LT

LN

Approved for Public Release, distribution is unlimited.

LS
ot
\";"
¥ ',_1 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
L]
\.‘:'.
. Unlimited
L]
\(\-
:,-3 18. SUPPLEMENTARY NOTES
N
ABA"
"n"
—
e
-';?‘, 19. KEY WORDS (Continue on reverse side if necessary and identify by dlock number)
%"‘)
, '~::,
"t.n: N
o unification, completeness, parallelism
%: 20. ABSTRACT (Continue on reverse side If necessary and identily by dlock number)
. The problem of unification of terms is log-space complete for
3 ﬁ P. In deriving this lower bound no use is made of the potentially
N concise representation of terms by directed acyclic graphs. 1In
addition, the problem remains complete even if infinite substi-

tutions are allowed. A consequence of this result is that
parallelism cannot significantly improve on the best sequential
solutions for unification. Th® “"dual® problem of computing the

DD , %", 1473 eoiTion oF 1 NOV 63 13 OBSOLETR

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

AT I S
e T T e Y, "o ot \ D PO s) o ‘\q"f'-'

rmmvmmwm'iﬂw:'?ﬁ- N R R R e R
\

- §

VY

Ly

. SECYMTY CLASNZICATION OF YiNs PASE(Fhen Dete Butered)

1 20. continued ‘

& !

¥ congruence closure of an equivalence relation is also log-space)

complete for P. However, we show that for the problem of term

-, -matching, an important subcase_ _of unificatioBt }here is a good ’

o parallel algorithm uging O(log“n) time and n 1) processors on a

j PRAM. For the O(log“n) parallel time upper bound we assume that

W the terms are represented by directed acyclic graphs; if the

N3 longer str:.ng representation is used we obtain an O(log N)

parallel time bound.
¥
A | Aocesston For
(NTIS GRA&I ‘B

v DTIC TAB

A Unannounced]

:Q Justificatiofe e,

N / bric

"

o By. cory

' Distribution/ '\”SFfCTED

N Availability Codes

}; Avail and/or

2 Dist Special

,_-“ .

v AL |

:}

~,

oY

3

‘

‘

59

\Q

A

s’

.

>,

\I

]

MG '
i

[14

5: \

S {

e {

) N [
|

Unclassified
SECURITY CLASRPICATION OF THIS PAGE(When Date Entercd)

4
U
.

Y AN

e,
CAS

\’ . \.. -.-“-

L o Vo ' AN - . - ML TRl S S L T YRS T e AT R
WAL TN T L N S DN L AL T NG N Y o . NN .

"7 P TEVAYETA TN YRTR RATITGTITATVICRATAT TR TR TR TATI RN T RS TR NN RS S L S S S S Sl ’-"'{

‘ 4
] N\
T
:f'.: On the Sequential Nature of Unification
oy
%
P ol .
o Cynthia Dwork! Paris C. Kancllakis? John C. Mitchelt3
] MIT Brown Univ. | MIT
A2
"' . November 1983
ne
- Abstract
x \: The problem of unification of terms is log-space complete for P. In deriving this lower bound no
i)

! ;J : use is made of the potentially concisc representation of terms by directed acyclic graphs. In
) addition, the problem remains complete even if infinite substitutions are allowed. A consequence of

) this result is that parallclism cannot significantly improve on the best sequential solutions for
5 unification. The “dual™ problem of compuung thc congruence closure of an equivalence relation is
! 3\3 also log-space completc for P. However, we'-show that for the problem of term matching, an
'}_ﬁ ' important subcase of unification, there is a good parallel algorithm using 0(logu nLumc and nOL)
225 processors on a PRAM. For the 0(logu n) parallel time upper bound We_assume that the terms are
VI represented by directed acyclic graphs; if the longer string represcntation is usedman
,.:: O(log n) parallel time bound, : °““""*;{
: 1
s 1. Introduction
5% , Unification is an important step in resolution theorem proving [R] with applications to a variety
.;:?; of symbolic computation problems. In particular, unification is used in PROLOG interpreters [CM],
N type inference algorithms [M], and term rewriting systems [GKM]. Many symbol manipulation
NN problems are inherently difficult and thus do not have efficient solutions. Theorem provers and
)l PROLOG interpreters do not always give us the answers we want fast enough. One way to combat
3'-: the difficulty of these problems is by coordinating many processors to solve a single problem
E}_': instance by working on several subproblems in parallcl. Although there are a number of ways to
’:: _ introduce parallelism into interpreters [S] and theorem provers, unification is a prime target since it
- is the most commonly repeated operation in these tasks. However, our analysis suggests that parallel
;: o unification algorithms will not perform significantly faster than the best sequential algorithms known
:;:.3 (e.g.. [PW] runs in linear time). We show that, unless PCNC, an unlikely twist of complexity theory
"‘-ﬁ [C), no parallel algorithm for unification will run in time bounded by a polynomial in the logarithm
of the input size, and using a number of processors bounded by a polynomial in the size of the
input. We usc the PRAM of [FW] as our model of parallcl computation, although we could, just as
Ej well, have used any other "reasonable parallel modcl” [J]
\o‘

1Supported by a Bantrell Fellowship. 2Supported partly by NSF grant MCS-8210830 and partly by ONR-DARPA grant
o~ NO0014-83-K-0146. Supporied by an IBM Fellowship.

W e W

AN AL AT

Informally, two symbolic terms s and t arc unifiable if there is some way of substituting
additional terms for variables in s and t so that both become the same term. All occurences of a
variable x in both s and t must be replaced by the samce term. For example, the terms f{x, x) and
Ag(y). 2(2(2))) may be unificd by substituting g(z) for y and g(g(2)) for x. A unification problem like

’ - "unify R}, ty) and f{t3, t4)" may be decomposcd into two subprobiems "unify t] and 3" and
1y “unify t and t4". However, these two problems cannot be solved cntircly separately in parallel. If
::' somc variable x occurs in both t; and t4. for example, then the solutions to the subproblems must
I}

be coordinated so that both substitute the same term for x.

There are several variations of the unification problem. For example, a type inference algorithm
may construct labeled graphs which represent terms that must be unified. An acceptable result of
unification, in this case, may bc a labeled graph with a cycle. Labeled graphs with cycles represent
types defined by recursion [MPS], or, if interpreted as terms, represent "infinite terms”. Thus one
natural, unrestricted version of unification is to allow "infinite terms” to be substituted for variables.

'-‘r"‘s" :’“’v
W

‘a

-

o Using the “infinitc term” f(f(f...)), we can unify x and Rx). something we could not do otherwise.
: Unrestricted unification also appears in many PROLOG interpreters; those omitting the occur test
! £ [CM]. Another variation on unification is the special case in which the labeled graphs are from a
o . class of tree-like directed acyclic graphs (which we call simple dags). The complexity of unification

'f'- on simple dags is precisely the complexity of unification on symbolic (string) representations of
terms, as opposed to the complexity as a function of the size of more concise graph representations.
For this case it was known that unification, without "infinitc terms", is co-NLOGSPACE-hard [LS]).
This did not exclude the possibility of paralle] algorithms, moreover no lower bound was known for
unrestricted unification.

]

wd
Ej We show that all of the above variants of unification are log-space complete for P [C, G1, G2},
"_:'.: and hence unlikely to have nice parallel solutions. The nondeterministic log-space test for

ununifiability in [LS}, which could have led to a O(log2 n) parallel time solution, is sufficient, but

..-:. unfortunately not necessary (see Figure 3b for a counterexample to this test). In addition, we show
&E that the related problem of congruence closure [DST] is complete for P.

A One important special case of unification can be solved quickly in parallel. This problem called
= term matching, arises in term rewriting. A term s matches a term t if t is a substitution instance of s.
j The rewrite rule /-»r may be used to rewrite a term t whenever [matches t [GKM]. We show that
: g: matching can be accomplished in logz-time on a PRAM, using a polynomial number of processors.
; f-: Our algorithm combines parallel transitive closure of a directed acyclic graph, with parallel
‘ computation of connected components of an undirected graph [HCS, Ch]. Also, matching is in
NLOGSPACE, and for simple dags it is in DLOGSPACE.

," o Following the definitions presented in Scction 2, we will discuss labeled graph unification in
Ia Section 3, unification for simple dags and congrucnce closure in Section 4, and term matching in

Section 5.

-

PEE]

Pontt, A2

ol W
i,

o’

s
A »

[/

¢

ol

2. Definitions
21 Terms and Dags

Let 17 be an infinitec set of variables x.y.2xy... and F an infinitc set of fincrion symbols
fg.h.f}... We assume that }’ and F arc disjoint. Each function symbol has a fixed arity, a
nonncgative integer af). A function symbol g€/ with a(g)=0 is called a constant. The set T of
terms is defined inductively by:

a variable x€V or constant g€F is a term, and
if f€F and ... lyf) arc terms, then ﬂll.....tam) is a term.

Terms may be represented using directed acyclic graphs with labeled nodes and. possibly.
multiple labelled arcs. A lubeled direcied graph is a finite dirccted graph G. such that:

(1) every node v of G has a uniquc label, denoted label(v)., with label(v)E VUF,
(2) for cach x€V, there is at most one node v with label(v)=x. and it has outdegree 0,

(3) if a node v has label fEF, with arity a()>0. then it has outdcgree a(f). and
the arcs leaving it are labeled 1,2...a(f).

If there is an arc labeled i from node u to node v, then we say that v is the i-th son of u.
A labeled dag G is a labeled directed acyclic graph. The leaves of G are the nodes of outdegree 0;
note that a node v is a leaf iff label(v) is cither a variable or a constant. The height of a node v of a
dag G is the length of the longest path from v to a leaf. A root of a dag is a node of indegree 0.

If G is a labeled dag, we can associate a term t, with any node v of G. We say that
v represents t,. The term t, is defined by induction on the height of v:

if v is a leaf, then t, =labekv),
if v has sons VisaVg, and label(v)=f, then ‘v=mv1""-‘vk)'

The definition of labeled dags above ensures that t, is always a well-formed term. If G is a
labeled directed graph, then we can associate an infinite term 1, with cach node v of G by a similar
definition. Since we only consider finite graphs, all terms represented by nodes of a labeled graph G
are finite iff G is acyclic. If G is a labeled dag with only one root r, then we say that G represents
the term t.

The representation of terms by labeled dags is illustrated in Figure 1. The terms g(x) and x are
represented by the two nodes of the labeled dag in Figure 1a. Both roots in Figures 1b, lc rcpfesent
fifix, x). fx, x)). The terms h(x, x, y, z) and h(g(y), 8(8(2)), 8(8(8))). 8(83)) are representcd by the
roots of Figure 1d. In Figure 1, we assume that a(f)=2, a(h)=4, a(g)=1, and a(g))=a(g;)=0.

Allhodgh each node of a labeled dag determines a single term, the converse is not true. A term
t can be representcd by several different dags. In particular, if t is a term with several occurrences
of a subterm (;, then we may use a scparate subdag for cach occurrence of t) in t, or usc one
subdag for all occurrences; cf. Figures 1b and 1c. Since a rcpcated subterm necd be represented

.......

LR AR

Y

'4’. ala Y 3

XA

e

.%5“&_

7990

b HRASA

4 LB

»~

AR

only once. it is possible 0 represent some very long erms with relatisely small Labeled dags. For
cxample, the dag in Figure e with n nodes represents a term with O2") symbols, We define a

class of labeled dags which arc no more concise that terms.

A simple dag is a labeled dag G such that the only nodes of G with indegree greater than 1 are
leaves. ‘Thus cvery node of a simple dag that is not a Icaf or a root must have indegree 1. Given a
term t (in the form of a string of symbaols), we can construct a simple dag representing t in lincar
time, using only logarithmic space. Similarly. given a simple dag G with a single root, we can write
out the term represented by G in lincar time and logarithmic space. Morcover, the size of a simple
dag. measurcd in number of nodes and arcs, is within a constant multiplicative factor of the length
of the term it represents.

2.2 Unification and Term Matching

Unification and term matching arc both problems that are solved by computing substitutions, A
substitution o is a mapping from variables to terms such that e(x)=x for all but finitcly many x€V,
The action of a substitution & on a term ¢, written 6(t). is the result of replacing cach variable x in t
by o(x). Thus a(Rt;....4))=Ro(t))....0(ty)). In particular, any substitution ¢ maps every function
symbol to itself, We use = to denote syntactic equality of strings.

Two terms s and t are wnifiable if therc exists a substitution ¢ such that o(s)=o(t). A term s
matches term t if there exists a substitution ¢ with e(s)=t

In some instances we may wish to allow substitutions to map variables to infinitc terms. If we
allow thesc more general substitutions, then we have the unrestricted unification and unrestricted
matching problems. Unrestricted unification differs from unification (e.g.. in Figure 1a x and g(x)
are ununifiable but unrestricted unifiable with o(x)=g(g(..)) an infinite term). Unrestricted
matching and matching are the same; note that we only consider substitutions that involve infinite
terms, not unification of infinite terms s and ¢

If a(s)=o(t), then o is called a unifier for s and t. A substitution o is more general than a
substitution = if there exists a substitution p with =pe®g¢. In [R], it is shown that whencver terms s
and t are unifiable, there is a unifier ¢ for s and t, which is more general than any other unificr.
This is called the most general unifier (mgu) for s and t. The mgu is unique up to renaming of
variables. For example, consider the terms s=1f{(x, y) and t=FRg(y), g(z)) represented in Figure 1f,
These terms are unifiable, with mgu o(x)=g(g(2)), o(y)=g(z), and o(z)=z; then
o(s)=o()=1g(s(z)), 8(2))-

Two terms s and t are unifiable if a certain kind of relation, can be constructed on the nodes of
a labeled dag representing s and t. If u and v are two nodes of a labeled dag and if u; is the i-th
son of u and v; the i-th son of v, for some i, then u;v; arc corresponding sons of u.v.
A relation R on the nodes of a labeled dag is a correspondence relation if, for all TRAT Y

uRv =+ uRv; whenever u;v; are comesponding sons of u,v.

L
o
1
L
L
q
|
L
<

PPN

il

¥
::; 5
f A correspondence refation that is also an cquivalence relation witl be called a ¢ relation,
.4 A relation R is homogencous if labelu) and label(v) arc not different symbols whenever uRv. j
An cquivalence rclation R on nodes of a labeled directed graph G is acyclic if the R-equivalence |
classes are partially ordercd by the arcs of G. In [PW]. acyclic, homogencous c-¢ relations arc calied
valid cquivalence relations. These relations characterize unifiability.
3
;»‘ Proposition 1: [PW] Let u and v be nodes in a labeled dag G. Then t,, and t, are unrestricted
- unifiable iff there is a homogencous c-¢ relation R, with uRv. Similarly, ¢, and t, arc unifiable iff
there is an acyclic, homogencous c-¢ relation R, with uRv. O
R
X If R is an acyclic. homogencous c-¢ relation on a labeled dag G. then the reduced graph formed
- by trcating each cquivalence class as a single nodc is again a labeled dag. If u and v arc the only
L. two roots of G, and uRv, then this reduced graph with a single root represents a term s that is a
'.‘j substitution instance of both t, and t,. If R is the minimal c-e relation with uRv, then
S s=o(t,)=o0(t,). where o is the mgu of t, and t, {PW]. We can extract ¢ from R by taking o(x) to
g be the term in the reduced graph that is represented by the node formed from the equivalence class
A of x. We can therefore consider the reduced labeled dag as a reasonable representation of a unifier
i'-'; for two terms. This representation of a unificr has the virtue of beirig compact; it is clear that the
/ ﬁ‘ reduced graph is no larger than the original dag. However, if we were to write out each unifier
3 explicitly, we might end up writing out terms that werc much longer than the terms represented by
- the input dag. An example in [PW] shows that the length of the substitution may be an exponential
Y function of the length of the input terms.
.,: As in [PW), we will represent equivalence relations on the nodes of labeled dags by adding
:., undirected edges to the labeled dag data-structure.
-l Matching may he viewed as a special case of unification. Let o be a substitution such that for
K ’S each distinct variable x, in the terms we are examining, o(x) is ¢y, a distinct constant symbol not
:_;: appearing in these terms. It is easy to see that a term s matches a term t iff s and o (t) are
e . unifiable. Another, degenerate case of unification is to determine whether two terms are syntactically
- identical. Of course, this is a trivial operation on strings, but it is not quite so trivial an operation
ol) when terms are represented by labeled dags. Clearly, s and t are syntactically equal iff o (s) and
N o (t) are unifiable.
, , In summary, using the labeled dag data structure, we have the following problems:
T
A UNIFY(G.u.v)
v Input: A labeled dag G with distinguished nodes u and v.
Output: Are t, and t, unifiable?
If yes, then produce a labeled dag rcpresenting the mgu.
2
5
7’4
I

. ':_i,' A -- \'W-“‘:"\. ' ‘.‘ N g "."" S' - =

) 6
;_
5 MATCH(G.w,v): This is UNIFY(Guy) with a(t,) instcad of t,.
,‘; .
" EQUAL(G.u.v)): This is UNIFY(G,uyv) with o.(t,). o(t) instcad of t,. t,.
Of course, there is also unrestricted unification UNlFY°°(G.u,v). We have a spccial case of

each of the above problems when G is a simple dag.
i3
R
0y 23 Parallclism, NC and P

For sequential computation we use the standard decfinitions for time, space, space-bounded
.: reductions and complexity classes such as P, DLOGSPACE, NLOGSPACE, T(n)-DSPACE, on a
¢ Random Access Machine (RAM) [C]. We denote log-space reducibility by 5108' As usual, P is the
.'. class of languages recognizable in deterministic polynomial time. The problems UNIFY, MATCH

h and EQUAL all belong to P [PW, MM}, Some may be solved in logo(l)n space, while others, those

A log-space complete for P, most probably cannot

B

“ For parallel computation we use the Parallel RAM (PRAM) of [FW] as our model, with parallel

; ‘{ time and number of processors as the critical resources. We make use of the parallel computation
thesis, relating parallel time and sequential space, and its proof for PRAM's [FW]:

N Ug>o log“(a)-parallel time-PRAM = Uysq log%(n)-DSPACE.

1:' We take NC to be the class of problems solvable on a PRAM using logo(l)n parallel time, and

b 20 processors. We try to determine whether a problem in P is "parallelizable™ (i.e., in NC) or
"most probably not parallelizable” (i.e., log-space complete for P); [C, J] review related results.

g

} One problem that is log-space complete for P is the circuit value problem for monotone circuits,

1§

A monote circuit B is a sequence (B,...B,)), where each B; is either an input, an and-gate AND(X),
or an or-gate OR(,k); where for indices jk we have Dj>k, and the 0,1 values of the inputs are given
explicitly. In addition, monote circuits are assumed to have the following properties:

.‘3 (1) if B; is an input, then the index i appears at most once in B, (fan-out <1 for inputs),
.“'.' (2) if B; is a gate, then the index i appears at most twice in B, (fan-out <2 for gates),
: (3) B, is an or-gate with one output.
" The monotone circuit value problem is:
MCV={B| B is a monotonc circuit with the output value of B, =0}.
. From '5i, G2] we have:
L. Proposition 2. MCV is log-space complete for P. O
%
‘\
"

v L are 4P JF

- - B
* . m et s et . L O L L LT L] C RSO I A ST UYL St S teoote
“Q‘t o f ‘a® MR/ > e RGN VAL TR SR P IRSIAL VA

R I WS WO AR A% ¢ LA

3. The Complexity of Unilication

‘The gencral unification problem, encountered in theorem proving and clsewhere, is to find a
simultancous unifier for a set of terms. However, the gencral case is log-space and lincar time
reducible to the special case of unifying a single pair.of terms [PW). On a PRAM this reduction can

v;; be performed in Olog n) parallcl time and with ((n) processors; it affects none of our results.
fﬁj We first describe a naive wnification algorithm based on the criterion of Proposition 1, and on
‘ the fact that the mgu is the minimal c-¢ relation [PW]. The input 10 the algorithm is a labcled dag
G with two distinguished nodes u and v. We wish 1o solve UNIFY(G.u.v). A relation ® is
{ " constructed and maintrined as undirected edges in G. The relation ® is by its representation
,'-

symmetric and reflexive. In order to make ® a c-e relation, both “correspondence™ and
“equivalence” must be satisfied. Scuting sons equivalent, when their fathers are equivalent. is known

g as propagation. For ® to be an cquivalence relation we must also enforce transitivity. Having

created the minimal c-c relation ® fer ‘vhich u®v. we then test for homogencity. In the

.' affirmative case a new labeled graph G' can be constructed by coalescing classes of nodes in G.

Now wc know that the input is at least unrestricted unifiable. If G° is acyclic it is unifiable.

e proc naive-unification(G,u,v)

:'.'z' set u®v ;

"j while (® is not a c-¢ relation) do

propagation: while (u®v have corresponding sons u,v; not related by ®) do set u;®v; od ;
transitivity: while (u®v and v®w, but uw are not related by ®) do sct uBw od

i od ;

. if ® not homogencous then print UNUNIFIABLE

» else {coalesce equivalence classes to producc labeled graph G'}

& if G’ has a cycle

¥ then print UNUNIFIABLE BUT UNRESTRICTED UNIFIABLE

j2 else print UNIFIABLE

4 f

3 ‘

" proc {G' represents mgu}

'y In this algorithm all individual steps can be performed on a PRAM using logo(l)n time and

b nO() processors. The difficulty arises in the outer loop, the body of which is cxecuted if ® is

e either not a correspondence, or not an equivalence relation, i.e., if either condition inside an inner

'. '$ Joop is satisfied. The problem is that on an input of size n the body of the main loop might be

bes executed O(n) times. This behavior is illustrated in Figure 2. The example can easily be generalized

; §'; to force the fXn) alternation between propagation and transitivity for any n.

| AR

SO AR 1o

B 1 AN B

AREZ T LU EARE S A Y

d .‘.40““

Y

v oA P ke ke g i "y ol 5 * ket co gl At B S ASES TV e T T O L0 € S S AL LRILIE LE UL R Sl S A S S Aty ‘.‘i

Theorem 1: UNIFY(G.iv) and UNIFY®(Gauv) are log-space complete for P.

Proof: W show how to log-space reduce MCV o unifiability (for membership sec [PW]). More
specifically. if @ is a monotone circuit {ao.al an}. we construct Gla), u(a). and v(a) such that
a€EMCV iff UNIFY(G(a).u(a).v(a))=UNIFIABLE.
‘This reduction dircctly applics to UNIFY® and is casily scen to use only .Iug space.

The monotone circuit @ can be represented as a diagram with wires, AND and OR gates of
fan-in' 2 and fan-out at most 2. a special OR output gate with onc output wire, and with cach input
wire Jcading 10 onc gatc and having a 0 or a 1 value (sec Figure 3a for an cxamplc). The input wire
values combine to producc values for all other wires and the output wire in particular. The circuit
has no feedback. i.e.. if the wires are viewed as arcs and the inputs and gates as nodes we get a dag
without multiple arcs.

(1) Introduce two nodes u(a), Wa) in G(a).

(2) If a; is an AND gate include G,ng from Figure 4a in G(a). If a; is an OR gate include
G, from Figure 4b in G(a). These dags have two pairs of input nodes and one pair of output
nodes each, ie., {IN}; INy} {INj;. INg} and {OUT); OUTy}. Corresponding sons are
illustrated by the labels a, b on the arcs.

(3) If a; is an input include in G(a) a pair of nodes {OUT);, OUT,;}. If the value of the input
is 1 then make OUTj;, OUT,; corresponding sons of u(a). v(a). If the value of the input is 0 then
make OUTy;. OUT,; sons of u(a) and let v(a) have two sons that correspond to them and are two
new leaves in G(a).

(4) If gate a; is connccted to aj, ay (i.e., in the wire diagram) then identify nodes
IN1i=OUT1j. IN2i=OUT2j. IN3;=OUT)4, IN4;=0UT,;. When these subdags are concatcnated
nodes have outdegree <2, and the labels on the arcs can be made 1 and 2, so that the equalities of
la.vrs a, b in Figures 4a, 4b is preserved.

(5) In the dag constucted in steps 1-4 above assign labels to the nodes as follows:
label(u)=1label(v)=h,
label(node of outdegree 1)=g,
labcl(node of outdegree 2)=f,
label(OUT})=81# 8y=1abel(OUT,,),
label(leaf other than OUTy,, OUT,,)=distinct variable.

We can easily see now that every wire w in the wire diagram can be associated to a pair of
nodes OUT,,, OUT,,.. We require u(a)®v(a). For such a minimal c-e relation ®, we claim that
the value of wire w in a is 1 iff OUT,,® OUT,,.. This certainly holds for the inputs, because of
the way we built corresponding sons of u and v. Also, it is trivial to check that C'and and Gor
simulate the behavior of AND and OR gates. Therefore the value of a, is 1 iff OUT;,®0UT,,.
The graph C(a) 1. constructed in such a way that the only place homogencity could be violated by
® is if OUT;,®0UT;,. As a result, if a=1, the terms represented by u(a) and v(a) are not
unrcstricted unifiable, and if a=0 they are unifiable (the acyclicity condition is also true). O

g {

A &l

ol e i B IR

AERE ace

: - ’

4. Simple Dags and Congruence Closure

e
- a¥

In this Section we will make our lower bounds independent of the potentialy concise dag

3 representation of terms, by cxtending them to simple dags. We will also investigate the related
- problem of computing the congrucnce closure of an cquivalence relation. -
b Theorem 2: UNIFY(G.u.v) and UNIFY®(G.u.v) are log-spacc complete for P, even when G is

a simple dag.
Proof: Given monotonce circuit @ we construct a simple dag G(a) with two roots u(a). and v(a)
so that, if a,=0 then the terms t,,). Ly(q) arc unifiable else they are not unrestricted unifiable.

This suffices for the completencss of both UNIFY and UNIFY®. Note that the proof of
J - Theorem 1 no longer applies, because the G dags used in that reduction could introduce nodes
. with indegree 2, i.c.. their output nodes, which werc not leaves.

As in the proof of Theorem 1, we encode the input of a using a pair of nodes for each circuit
input. The input-subgraph of the graph of Theorem 1 is actually a simple dag, so we use the same
construction. However, we cannot attach "gates” directly to the input-subgraph since this will
produce a dag which is not simple. Instcad, each gate will be constructed separately using a pair of
subgraphs. Any c-e relation ® with u(a)®v(a) will rclate the two parts of each gate. In addition,
the input nodes of one gate will be “connected” to input-subgraph nodes or output nodes of other
gates using a separate "patch board” subgraph. Recall that the gates of a are numbered so that if an
output of gate a; goes to an input of gate a; then ij.

3 ot o
T ¥V

For each gate of a, we use four input nodes and four output nodes. For gate aj, let us denote
thesc nodes by INy;... INg; and OUTj;...., OUTy;. As in the proof of Theorem 1, the nodes of
G(a) work in pairs. Inputs IN;; and INy; represent the first input to a; and IN3; and INy; the
second. Similarly, nodes OUTy; and OUT,; represent the first output of a; and OUTj3; and OUTy;
) the second. We also use nodes uj, v; which are the i-th sons of roots u(a) and v(a), respectively,
f and four or seven intermal nodes which may remain anonymous.

ot WS

If a; is an OR-gate, then we construct a simple dag GATE; as in Figure Sa, with vu;, v;
corresponding sons of u(a), v(a). If ® is a c-e relation with u(a)®v(a), it is easy to see that
OUTIiQOUTZi and 0UT3i®0UT4i if either IN li®lN2i or lN3i®lN4i. It will be clear from the
construction of G(a) that if ® is minimal, then these are the only cases in which the output nodes
will be related by ®. If a; is an AND-gate, exactly similar reasoning applies for the simple dag of

! Figure 5b, which simulates the logic of AND.

Cig el il

» s x

The remaining task is to "conncct” the gates so that if, for example, the first output of a; goes
to the second input of aj, then lN3j®lN4j whenever OUT);@OUT,;. We use an example
conncction between a; and aj to illustrate the construction of a "patch board" simple dag PATCH,
which contains two new nodes Uy Vp and IN and OUT nodcs from the input-subgraph and gate
subgraphs of G(a). Let Up: ¥p be corresponding sons of w(a), v(a), different from the sons used in

the gate and input subgraphs. Now make lN3j and OUT); corresponding sons of up and vpr also

-

BT TR SR YR TY 1M

AL LT T R T O T
WHEHLHLHE YL SR

[°, N

I

XOOPK <. | XZXS

A

AT YIEEY L T T REY R Y . ¥ I YK €X, i e Lt ey De” e N Su U ST A () S oM Ay N Rt R AT A ‘.'t'q’.t_‘J.U'_r'-“-:::f:\;-VAL‘:.W

make IN4j and OUTy; corresponding sons of Up and ¥p (see Figures Sc and 5d). When w(a)®hv(a).
wo input nodes of GA'I'I-‘.j will be merged if the right two output nedes of GATE; arc.

As in the proof of Theorem 1, we label the outputs of the final gate with different constant
symbols. All other nodes have labels that depend on their arity, so that nodes with outdegree 2, say,
N have the same label. 1t is casy to verify by induction that in the minimal c-¢ rclation ® with
B wa)®v(a). we have OUT;,®0UT,, and OUT;, ®OUTy, iff the output of the last gate ap is 1.
This completes the proof of Theorem 2.0

Fat

R

'{3 Congruence closurce is a practical problem that is in many ways a dual to unification. In
"-" unification, the cquivalence classes of m and n arc merged whenever there exist somc cquivalent r
X and s such that m and n arc corresponding sons of r and s. In congruence closure. the equivalence
o classcs of r and s arc merged whenever, for all pairs of corresponding sons m, n, we have that m
:: is cquivalent to n. We consider a pure form of congruence closurc in which the node labels are
ignored. however, the arcs must still be labeled so that we can sce which sons correspond. Efficient
.. algorithms for congruence ciosure arc contained in [DST].

:;. An equivalence relation ® on the nodes of a labeled graph is a congruence relation when:
::: if u,v have same outdegrec and for each pair of corresponding sons we have u;©v;, then u®v.
;: Given any cquivalence relation R, there is a unique minimal congruence relation that contains R,

59 called the congruence closure of R. An equivalence relation R can be represented using undirected

edges in a labeled dag. We can now pose the following language recognition problem:

;r.:‘ CONG ={<G,u,v,R>| nodes u and v of labeled dag G are related by the congruence closure of R}.
gj By using a construction that resembles that of Theorem 1 "turned upside-down"™ and that

S, exhibits an and/or duality between unification and congruence closure we can show that:
<

{: Theorem 3: The language CONG is complete for P.

:\:; Proof: Again we reduce MCV to CONG. The wires of the circuit diagram correspond to pairs
3 of nodes, such that, the two nodes are rclated in © (the congruence closure) iff the value on the

wire is 1. Given a monotone circuit a we construct a dag G(a), an equivalence relation R(a) on its

N nodes, and two roots of the dag u(a), v(a). We wish to test the two roots for equivalence in ®, the

2 congruence closure of R(a).

The construction is bottom-up, so that each circuit input corresponds to a pair of leaves and
each OR and AND gate to a subgraph with two pairs of input and two pairs of output nodes each;
. the last OR-subgraph has only one pair of output nodes u(a). v(a). The inputs and outputs are
3 connected in a pattern similar to that of the proof of Theorem 1. The input lcaves are represented
A in Figurc 6a, note that for inputs that arc 1 the two lcaves are in the same equivalence class of
R(a). The OR-su-graph is in Figure 6b, and two pairs of internal nodes form cquivalence classes of

_ R(a). The AND-subgraph is in Figure ¢. It is simple to verify that the gate subgraphs simulate the
:‘_’ gate logic and that wWa)®v(a) iff the output of the circuit a is 1. O

3 '

e

¢4

i ¥

P s P RS VA" . o Cag? 0% 0 5, e SLICC N L P T e TP NI L ERTOER
L ST SE R e A R o S I N I A P O R, S G L TS ST A A A, VT AT, NI AT

(LA

o 11
i 5. A Panallel Algorithm for ‘Term Matching
‘, Unification is a practical sequential algorithm for matching since unification can be donc in

lincar time. However, unification is not a good parallel approach to matching. We show how
MATCH(G.u.v) can bc computed in lngzn parallel time using polynomially many processors. In
addition. we prove that MATCH(G.u.v) is in co-NLOGSPACE. If G is a simple dag then
MATCH(G..y) is actually in DI.OGSPACE.

o T S
2 2 BB AN

When we wish to determine whether s matches t. we will assume w.Log. that no variables
appear in t. In Scction 6 we further clarify the relationship between matching and unification. Since

’ MATCH(G.u,v) is the same as UNIFY(G,u.v) when no variables appear in t.. we know that t, .
N matches t, ifT there is a homogencous c-¢ relaion ~ on G with u~v. A refincment of this)
5 characterization of term matching suggests an ecfficient parallel algorithm,

, lemma 1: Let G be a labeled dag with nodes u and v, and let the subgrapﬁ of G induced by

2 the descendants of v have no nodes labeled with variables. let R be the minimal correspondence h
'3) relation on G with uRv, S be the minimal cquivalence relation containing R, and T be the minimal ‘
2 correspondence relation containing S. Then t, matches t, iff T is homogencous.

) Proof: If 1, matches t, then since t,, and t, arc unifiable, the miqimal c-e relation ~ with u~v
i is homogeneous. Since ~ must contain T, it follows that T is homogeneous. ‘-,
X For the converse, suppose that T is homogencous. We will define a substitution ¢ such that
8 o(ty) = t,. Let G.G, Dbe the subgraphs of desccndants of u.v respectively. We first show that for
i every node x in G, there is a node y in G, such that xRy. If, on the contrary, there is some x in

2 G,, without xRy for any y in G, then lct w be the last node in some path from u to x with wRz

.',- for some z in G,. Since w has a son, labcl(w) is a k-ary function symbol for some k>0. By similar

reasoning, label(z) is a zero-ary function symbol. But then label(w)#label(z) and hence T is not

homogenecous. It follows from this contradiction that every S-equivalence class contains at least one "
o node from G,. X
}’ For cach S-equivalence class E, pick some node e from G,. If w is another G, node in E, then .
j¢ . since T is homogencous and no variables appear in G,, we can argue that t, = t, (here we have 3
the problem EQUAL). We now define the substitution o. For any variable x in t,;, let E be the §-

Ly equivalence class of the node labeled x and define a(x) = te. It is casy to check by induction on
g the height of a node w in G,, that if wRz, then o(t,) = t,. Thus o(t)) = t, and t,, matches t,.0
‘ Given any relation, we can find the minimal correspondence relation R containing it, in logZn
" parallel time and nO(1) processors on a PRAM, using a transitive closurc algorithm [Ch]. If G is a

X labeled dag with n nodes, we define an n2 by nz boolcan correspondence matrix C;. We associate -

I cach (unordered) pair of nodes of G with a row and a column of Cg; and define the entries of C;:

Coliu, v}, {x, y}) =1 iff x and y are u and v or corrcsponding sons of u and v. s‘
- Lemma 2: Let G be a labeled dag with nodes u and v, and let R be the min. correspondence -

relation s.t. uRv. Then xRy iff the ({u, v}, {x, y}) entry of Cg's transitive closure equals 1. O

B S S L S ST O R ST 5 A NS TS L LD Qv R SR TR S

4 . | . N - .
A} o ", .« o

Now given relation R, we can find the minimal cquivalence relation S containing R using a
connccted components algorithin, It is well-known that connected components can be computed in
Iogzn paralicl time and nO() processors on a PRAM [CHS).

Since computing correspondence relations twice. connected components once and testing for
homogencity are sufficient to decide matching. we have that MATCH(G.u.v) can be computed in -
logzn parallel time and nO() processors on a PRAM (or cquivalently MATCH € NC). a

NLOGSPACE € NC:

Theorem 4: The set of <G.u,v> such that MATCH(G,u.v) = false is in NIL.OGSPACE.
Furthcrmore, if G is a simplc dag. then this recognition problem is in DI.OGSPACE.

In fact. we can show somewhat tighter complexity upper bounds, since DI.OGSPACE C q
Y
3
Ty

Proof: l.ct G be a dag with MATCH(G.u.v) = false. Let R.S.T'bc relations on the nodes of G T
as in the statcment of l.emma 1. By Lemma 1, there must be nodes x and y of G such that xTy.
but labcl(x) and labeky) are two different function symbols. We show that there is a log-space © g
bounded nondeterministic Turing machine M- capable of gucssing all pairs (x.y) such that xTy, N
and checking whether x and y have the same labels. Thus recognizing the <G,uv)'s, such that,
MATCH(G,u,v) = true is a problem in co-NLOGSPACE (also a subset of the class NC).

To begin with, let Mp be a nondeterministic machine that starts with the pair (u,v) on its 4
worktape. A move of My consists of replacing a pair (x.y) with a pair (x;.y;) of corresponding sons :
of x and y. Clearly Mp is capable of gucssing (x.y) iff xRy.

We now define a nondeterministic machine Mg using MR. The machine Mg begins by running =
Mp some nondeterministic number of steps to guess a pair (x.y). Subsequently, Mg repeats the .
following 3 stcps nondeterministically:

(1) If one pair (x,y; or two pairs (x,y) (w,z) are on the worktape, then it may replace (x,y) by (y.x).
(2) If (xy), (v.z) are on the worktape, then it may replace both by the single pair (x.z).
(3) If the single pair (x,y) is on the worktape, then it may run Mg some number of steps to guess i
(w,z) and end up with both pairs (w,z), (x,y) on the worktape,

With these primitive steps Mg may guess (xy) iff xSy.

Finally, we build M from Ms. This machine behaves just like Mp, but instead of starting with
(u,v), starts with any pair (x.y) that Mg is capable of guessing. This concludes the proof of the first
part of the thcorem, which in a way describes the PRAM algorithm sketched above, but from the
point of view of nondeterministic log-space.

If G is a simple dag, then MR can easily be made a deterministic depth-first cnumerator of
pairs (x,y). This machine MDp always maintains the pair immediately preceeding the current one,
50 Mt it can backirack from leaf nodes. Backtracking from intcrnal nodes is staightforward since
each has indegrec 1.

)\

Using a log-spacc preprocessor we can treat the subgraph rooted at v as a tree. Recall that this
graph has no variables, so that all we need to do is duplicate leaves labeled with constants, By doing

VPPl

s

N
; ...'_ . e ® '.. - -'.. -'. . - 'f - ‘!. ~ - .."‘ ~.-$ -\f\.:..-\'-\(_-. \-'_.p’".' \.‘~q_ \' o, \' \n $! .‘. ‘.-\-- \'\}-‘:.\}\.f ~ ‘~ $- @;‘\w ...-.\
Lontat » v R 9 - Biie S)

.b‘] > I ! A iy T _‘. P A TNV R TATE AN RS =’ SN A St S -, o
X .
154 13
N
.}:; this we limit the numbcer of times step (2) of Mg must be repeated 10 only two. Thus we can
::., construct a deterministic machine Mg that enumerates all (x.y) such that xSy. Finally, we build a
- deterministic MI>): from MDp and MDg as before. O
. j ~ A corollary of Theorem 4 is that for simple dags deciding whether MATCH(G.u.v) = rrue is also
:-4 in DLOGSPACE. since DL.OGSPACE is closed under complement. From the analysis in [FW] it
> also follows that this problem can be solved in Oflog n) paralicl timec on a PRAM.
)b
,,i 6. Conclusions and Opcn Problems
¢
o We have demonstrated that several versions of unification are complete for P. This suggests, by
1§
o way of the parallel computation thesis, that unification is inhcrently sequential. It is unlikely that
. significant improvements in the specd of theorem provers, interpreters for logic programs, and the
é like will be brought about by the dcvelopment of paralle]l unification algorithms. However, for the
:‘E} . special case of term matching, the prospects arc much brighter. Term matching can be accomplished
o
I in log n or logzn parallcl time, depending on whether the input is in the form of a simple dag.
. We might also point out that unification of terms s and t is complete for P even if s and t do
2 not contain any variables in common (this is different from t having no variables). Also, if s and t
4“:} are unifiable this does not imply that s matches t or that t matches s. However, if s matches t then s
\' and t are unrestricted unifiable. If s matches t and t matches s they are unifiable.

Intuitively, congruence closure appears to be a "dual” of unification. It, too, is complete for P.
. As a consequence, various congruence closure problems, such as the decision problem for the first-

order quantifier-free theory of equality [DST] are not conducive to extremely fast parallel solutions.
o There are remarkable similarities between the sequential algorithms for unification and testing
' equivalence of deterministic finite automata. However, the inequivalence of deterministic finite
;,' automate can be detectcd nondeterministically using only logarithmic space. A machine can see that
'ij two automata A; and A, are equivalent by guessing an input string, character by character and
:'4 simulating the actions of both machines as it goes. If one ends up in an accept state while the other
' rejects, then the two are clearly different. If A} and A, differ, then some sequence of characters
.' must surely uncover this. Thus unification is subtly, but fundamentally different from this "almost
:; identical” problem.
S Some interesting open problems remain unresolved, namely; (1) lower bounds for the
> complexity of MATCH and EQUAL, or can our upper bounds be improved, (2) the number of
processors used in the transitive closure of a correspondence matrix is unrealistically large, and it
Sf would be of some practical significance to decrease it to even n3, and finally (3) what is the
o complexity of commutative matching, i.e. if function symbols stand for commutative operations.
oy '
-
- .
NI

[]

oy ,q',(~

»»»»»»»

References

B rels

. [C] Cook, S.A.. "An Overvicw of Computational Complexity™, CACM 26(6), 1983, pp 400-409.

‘ [Ch) Chandra. A.K.. "Maximal Parallclism in Matrix Multiplication", 1BM recport, RC 6193, 1976.
- [CM] Clocksin, W.F., Mcllish, CS., "Programming in Prolog", Springer-Verlag, 1981.

[1)ST] Downey, P.J., Sethi, R., Tarjan, R.E., "Variations on the Common Subexpression Problem”,
JACM 21(4), 1980, pp 758-711.

[FW] Fortune, S., Wyllie, J., “Parallelism in Random Access Machines”, Proc 10th ACM STOC,
pp 114-118.

[G1] Goldschlager, L.M., "The Monotone and Planar Circuit Value Problems are Log Space
Complete for P°, SIGACT News %2), 1971, pp 25-29.

[G2) Goldschlager, .M., Shaw, R.A., Staples, J., "The Maximum Flow Problem is Log Space
Complete for P, TCS 21, 1982, pp 105-111.

[GKM] Guttag, J.V., Kapur, D, Musser, DR., "On Proving Uniform Termination and Restricted
X Termination of Rewriting Systems”, Siam J. Computing 12(1), 1983, pp 189-214.

[HCS] Hirschberg, D.S., Chandra, AK., Sarwate, D.V., "Computing Connected Componcats on
¥ Parallel computers”, CACM 2(8), 1979, pp 461-464.

{7] Johnson, D.S,, “The NP-Complcteness Column: An Ongoing Guide™, J. of Algorithms 4, 1983,
N
‘N pp 189-203.

7

R SO N

YY XYY

L~ [LS] Lewis, HR., Statman, R., "Unifiability is Complete for co-NLOGSPACE", IPL 15(5), 1982,
L~ pp 220-222.
" [M] Milner, R., "A Theory of Type Polymorphism in Programming”, JCSS 17, 1978, pp 348-375.

{(MM] Martelli, A., Montanari, U, "An Eflicient Unification Algorithm", ACM Trans on
Programming Languages and Systems, 42), 1982

= [MPS] MacQueen, D., Plotkin, G., Sethi, R., "An Ideal Model for Recursive Polymorphic Types",
Proc. 1984 ACM POPL, to appear.

3 [PW] Paterson, M.S., Wegman, M.N,, “Linear Unification”, JCSS 16, 1978, pp 158-167.

M {R] Robinson, J.A,, "A Machine Oriented Logic Based on the Resolution Principle”, JACM 1X(1),
- 1965, pp 2341

{ 4 (S] Shapiro, E.Y., "A Subset of Concurrent Prolog and its Interpreter”, ICOT report TR-003, Tokyo,
; JAPAN, 1983,

g.

R AL TN 2 O N, W ASAC AN T AR SN ASAY)

PETIETS TR) i =S (3 RARSE GELE SR A SR G R PR LR LR Ay |
-
L

<

b

>

XA

NS

(2)

."}J"i AN
—

L IS
k4

s
-~

e Figure 1: labeled dags

T a¥al) A A Y Bb PR A RA Sd” A R AR R R AR/ i St S P Rt R S A RN AT m A .'.'-".g-'.-

) ».
vuY

v‘-_ﬂ',s,éﬁ_ W - ‘F

IJ‘! St !

.
b ¥ R

e, o
1

LA A

1. AGB

2. CeD, CeE, HoF, LoG (propagation)
3. D®E (transitivity)

4. Hel (propagation)

5. F®l (transitivity)

6. L®J (propagation)

> 1. J®G (transitivity)

] 8. M®K (propagation)

& 9. ununifiable because M and K have distinct labels g and g).
3

.;A

x

a Figure 2: illustrating naive-unification

Ve~ s SR

£) ‘v;l P ‘

o
L S’ N AP)

e e - elxi e
VR 5 .

FhANAIAA,

125

[} Y]

e A T A

MR g o ¥

]

“““““ NN S

label(u) =label(v)=h, label(w)=g; #8) = label(z)
label(node of outdegree 1)=g

label(node of outdegree 2)=f

label(leaf other than w, z)=distinct variable

®)

Figure 3

= o, ¥
NS NTVOR TR O R D i

!3‘\‘. "b\‘l‘ l\n ‘r \l V ‘q' ' .u B

1 4

TS

-y L hln e b A ak b by Tk B0 34 AL RACR R ADA DAL ta N /A L T ARSI N ML R S S O Y Y i A R S T T \"{

i3

% "‘# Nei g INg;

u).';‘ ﬁ '.‘"
Q
c
=Y -
g
»n

L&

A2

| g

(%) Gor

. Figure 4: Theorem 1 subgraphs

KR LALMALAr

s oW
o R e

"fg,

LA

PEE—
33 -AF
me———

- ¥
)

(a) OR subgraph

ouT; j 0uTy,

(c) example use of PATCH

1
ouT,; 0UT,, ULy, OUT;

(b) AND subgraph

(d) putting everything together

Figure S: Theorem 2 subgraphs

) Sy s Ny \"\‘ s 1

e
g W ¥

B e S e b e et LE S o L ol G AN CANLS. TR o i N e TS SO SRS TS LR AR D LUNERE S8, S Erl LS el

U

~

. o R *ceenmwe -
o ' X
3 , :
) () inputs r
? :
i ’
g :
" -
i

(b) OR subgraph

] P
» OUT" Ol.ﬂ'2i OUT3i Ol."‘i -
!
ll
‘ INg Ny, INg; INg;

; K
‘ (c) AND subgraph :
: X

\)

Figure 6: Theorem 3 subgraphs ;
(R is denoted by ---------)

NI AT ARSI RIS TR T TR NS P SN A I
a 3 TR % -

L X3

{ XX

o Ra W %
.
&

o=

Nelalas

. S eSte A

s SRR IAN -

OFFICIAL DISTRIBUTION LIST
1984

Director

Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 wWilson Boulevard

Arlington, VA 22209

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
Office of Computing Activities
1800 G. Street, N.W.
wWashington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR
NAVDAC-OOH

Department of the Navy
Washington, DC 20374

e § e

AT AT T R TR 0T P S, P U AL PO

PN LR R S L

2 Copies

2 Copies

6 Copies

12 Copies

2 Copies

1 Copy

1 Copy

Ty N -
¥ S R S

